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Abstract
Hopf-algebra quantizations of four-dimensional and six-dimensional real
classical Drinfel’d doubles are studied by following a direct ‘analytic’ approach,
and the full quantization is explicitly obtained for most of them. Several new
four- and six-dimensional quantum algebras are presented and some general
features of the method are emphasized.

PACS numbers: 02.20.Uw, 02.20.Sv, 03.65.Fd
Mathematics Subject Classification: 81R50, 81R40, 17B37

1. Introduction

The essential role that Lie bialgebras play in the quantization of Poisson–Lie structures comes
from the well-known result by Drinfel’d [1] that establishes a one-to-one correspondence
between Poisson–Lie groups and Lie bialgebras. In fact, the concept of classical double
[1] is just a reformulation of that of a Lie bialgebra in terms of a (double)-dimensional Lie
algebra endowed with a suitable pairing. This ‘duplication’ process can be iterated by taking
into account that the double Lie algebra can be in turn equipped with a quasitriangular Lie
bialgebra structure by means of a canonical classical r-matrix.

The Hopf algebra quantization of a double Lie bialgebra is the so-called quantum double,
a basic object in quantum group theory (see, for instance, [2–9] and references therein). In
particular, quantum doubles are helpful for the explicit construction of quantum R-matrices of
quantum groups and supergroups by following a ‘universal T -matrix approach’ [10] (see also
[11–17]). From the physical point of view, σ -models related by Poisson–Lie T-duality are
connected with classical doubles (see [18–20] and references therein), while their quantum
versions have been considered as symmetries in quantum field theory [21, 22].

We also recall that in [23] the full classification of two- and three-dimensional (3D)
real Lie bialgebra structures and their associated Drinfel’d doubles has been obtained. That
result is tantamount to the (first order) classification of quantum deformations of 4D and 6D
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Drinfel’d doubles. Complementarily, the classification of such doubles has been performed in
[20] and [24], respectively, by following a direct approach based on analyticity. Throughout
the paper we will preserve the notation and labelling for the Lie bialgebras and Drinfel’d
doubles given in [23], although both classifications are fully equivalent (up to the fact that
[23] does not consider 6D classical doubles coming from a trivial Lie bialgebra with vanishing
cocommutator δ or, equivalently, with Abelian dual g∗).

The aim of this work is to provide a global insight into the Hopf algebra quantization of
4D and 6D Drinfel’d doubles (DD) by making use of a direct quantization procedure that has
been recently used in order to obtain and classify 3D quantum algebras [25]. The motivation
for this study is twofold.

Firstly, the family of 6D DD algebras is physically interesting. For instance, it contains
the so(3, 1) and so(2, 2) algebras as well as the (2+1) Poincaré algebra. Therefore the DD
quantizations will provide quantum deformations for these algebras. In particular, the class
of DDs with g = r3(1) (i.e. the Lie algebra generated by two Euclidean translations and
one dilation) can be thought as so(p, q) Lie algebras (with p + q = 4) and some of their
contractions [26]. In general, such quasitriangular quantizations turn out to be superpositions
of a standard (quasitriangular) quantization plus twists. We will discuss the properties of all
these quantum algebras, and we explicitly obtain most of them by making use of a quantization
procedure that we introduced in [25].

Secondly, since Lie bialgebras (therefore, DD algebras) provide a classification of first-
order quantum deformations, the set of DD quantizations can be considered as an appropriate
setting for the search of classification schemes for quantum deformations. In fact, several
strong regularities are found within the set of quantum algebras that are presented in this work,
and these common facts can be thought of as guidelines for a future research programme of a
classification ‘à la Cartan’ of quantum groups [25]. Among them, we mention the following
common properties of the quantizations:

• All found 4D and 6D DD algebras are non-simple Lie algebras.
• The only functions appearing in the deformed commutation rules and coproducts are

exponentials and polynomials [27]. Thus, in each representation, the convergence radius
in the complex parameter z is infinity.

• The quantization is obtained by following an ‘analytic approach’ in the full symmetrized
basis of the quantum universal enveloping algebra.

• ‘Generalized cocommutativity’ (where z is changed of sign) [25] is preserved and the
powers of the ‘generators’ are related with the power of z.

• Every DD deformation presented here is generated by a standard classical r-matrix.

The structure of the paper is as follows: section 2 is devoted to fix the notation. Section 3
presents the study of quantum 4D DD algebras. The following sections develop the
quantizations of 6D DD algebras. Finally, some remarks conclude the paper.

2. Drinfel’d double (bi)algebras

Let us consider a Lie bialgebra (g, δ) and a basis {xi} of g. Such a Lie bialgebra can be
characterized by a pair of structure tensors

(
f lm

n , ck
ij

)
, i.e.,

[xi, xj ] = f
ij

k xk, δ(xn) = cn
lmxl ⊗ xm.

In this language, the cocycle condition for the cocommutator δ becomes the following
compatibility condition between the tensors c and f :

f ab
k ck

ij = f ak
i cb

kj + f kb
i ca

kj + f ak
j cb

ik + f kb
j ca

ik. (1)
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Now we fix a basis {Xi} for the dual algebra g∗ through the following pairing:

〈Xi,Xj 〉 = 0, 〈xi, xj 〉 = 0, 〈xi, Xj 〉 = δi
j , ∀ i, j.

Then (g∗, η) is also a Lie bialgebra with structure tensors (f, c), i.e.,

[Xi,Xj ] = ck
ijXk, η(Xn) = f lm

n Xl ⊗ Xm.

This duality leads to the consideration that the pair (g, g∗) and its associated vector space
g ⊕ g∗ can be endowed with a Lie algebra structure by means of the commutators,

[xi, xj ] = f
ij

k xk, [Xi,Xj ] = ck
ijXk, [xi, Xj ] = ci

jkx
k − f ik

j Xk. (2)

This Lie algebra, D(g), is called the double Lie algebra of (g, δ). Obviously, g and g∗ are
subalgebras of D(g), and the compatibility conditions (1) are just Jacobi identities for (2).

Moreover, if g is a finite-dimensional Lie algebra, then D(g) can be endowed with a
(quasitriangular) Lie bialgebra structure (D(g), δDD) generated by the classical r-matrix

r =
∑

i

xi ⊗ Xi

or, equivalently, by its skew-symmetric counterpart

r̃ = 1

2

∑
i

xi ∧ Xi. (3)

In this respect, note that C = ∑
i (x

iXi + Xix
i) is always a Casimir operator for the DD

algebra. Hence, if we denote � = ∑
i (x

i ⊗ Xi + Xi ⊗ xi), then [1 ⊗ Y + Y ⊗ 1,�] = 0 for
any generator Y of the DD algebra and r̃ = r − 1

2�.
The cocommutator δDD derived from (3) is

δDD(xi) = δ(xi) = ci
jkx

j ⊗ xk, δDD(Xi) = −η(Xi) = −f
jk

i Xj ⊗ Xk.

In fact this ‘double Lie bialgebra’ has as sub-Lie-bialgebras (g, δ) and its dual (g∗, η).
This paper is based on the integration to all orders in z of the preceding relations, i.e. on

the construction of the � such that (�0(X) = 1 ⊗ X + X ⊗ 1):

� = �0 + zδDD + o[z2],

and, afterwards, of the deformed commutation relations compatible with them.

3. Quantum four-dimensional DD algebras

We shall use the Gomez results and notation for Lie bialgebras [23], that are shown in the tables
where for each sub-Lie-bialgebra structure (g, g∗) and DD algebra all the Lie brackets are given
(λ is an essential parameter and ω = ±1). In order to simplify the text we do not explicitly
write the primitive coproducts �0, and we do not list the undeformed commutation relations
that are displayed in the corresponding table. So, for each DD algebra, only coproducts and
commutation rules that deformed in the quantization are explicitly presented.

The two 4D DD algebras are the ‘standard’ one (isomorphic to a semidirect product of the
Borel subalgebra b2 and R2, hereafter denoted as b2 � R2) and the ‘non-standard’ one (with
λ 	= 0), which is isomorphic to gl(2). Let us now describe their quantization (see [24] for the
connection of both DD algebras with Poisson–Lie T-duality).
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Table 1. Four-dimensional DD algebras.

(g, g∗) (b2, b2) (b2, b2)

DD b2 � R2 gl(2)

[x0, x1] x1 x1

[X0, X1] X0 λX1

[x0, X0] x1 0
[x0, X1] −x0 − X1 −X1

[x1, X0] 0 λx1

[x1, X1] X0 −λx0 + X0

3.1. The case b2 � R2

Deformed coproducts integrated from δDD:

�(x0) = e−zx1 ⊗ x0 + x0 ⊗ ezx1
, �(X1) = e−zX0 ⊗ X1 + X1 ⊗ ezX0 .

Deformed commutation rules compatible with the previous coproduct:

[x0, x1] = sinh(zx1)

z
, [X0, X1] = sinh(zX0)

z
,

[x0, X0] = sinh(zx1)

z
, [x0, X1] = −cosh(zX0)x

0 − cosh(zx1)X1,

[x1, X1] = sinh(zX0)

z
.

To our knowledge, this is a new four-generators quantum algebra, whose additional central
element is x1 − X0. We also remark that, in spite of appearances, also the right-hand side of
[x0, X1] belongs to the symmetric quantum universal enveloping algebra since

−cosh(zX0)x
0 − cosh(zx1)X1 = −Sym{cosh(zX0)x

0} − Sym{cosh(zx1)X1},
where Sym is a linear operator such that

Sym{A1 · · · An} := 1

n!

∑
p∈Sn

p(A1 · · ·An),

with Sn the permutation group of n elements (see [25]).

3.2. The gl(2) case

The quantization of this DD leads to the deformed coproducts

�(x1) = ezλx0 ⊗ x1 + x1 ⊗ e−zλx0
, �(X1) = e−zX0 ⊗ X1 + X1 ⊗ ezX0 ,

and to the deformed commutation rule

[x1, X1] = sinh(z(−λx0 + X0))

z
.

We mention that C = λx0 +X0 is a Casimir operator for this quantum algebra, which has been
already studied in [28]. Note that the case λ = 0 is isomorphic to the ‘standard’ case, as has
been pointed out for the DD algebra in [24].
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Table 2. DD algebras with g = r3(1).

(g, g∗) (r3(1), sl2) (r3(1), so3/sl2) (r3(1), sl2)
′ (r3(1), s3(0)) (r3(1), n3) (r3(1), r3(−1)/s3(0))

DD sl2 ⊕ sl2 so(1, 3) sl2 � R3 so(1, 3) sl2 � R3 sl2 � R3

[x0, x1] x1 x1 x1 x1 x1 x1

[x0, x2] x2 x2 x2 x2 x2 x2

[x1, x2] 0 0 0 0 0 0

[X0, X1] λX1 λX2 X0 λX2 0 0
[X0, X2] −λX2 −λX1 X1 −λX1 X1 X1

[X1, X2] X0 ωX0 X2 0 0 ωX0

[x0, X0] 0 0 x1 0 0 0
[x0, X1] x2 − X1 ωx2 − X1 −x0 − X1 −X1 X1 ωx2 − X1

[x0, X2] −x1 − X2 −ωx1 − X2 −X2 −X2 −X2 −ωx1 − X2

[x1, X0] λx1 −λx2 x2 −λx2 x2 x2

[x1, X1] −λx0 + X0 X0 X0 X0 X0 X0

[x1, X2] 0 λx0 −x0 λx0 −x0 −x0

[x2, X0] −λx2 λx1 0 λx1 0 0
[x2, X1] 0 −λx0 x2 −λx0 0 0
[x2, X2] λx0 + X0 X0 −x1 + X0 X0 X0 X0

4. Quantum six-dimensional DD algebras: g = r3(1)

We start with the cases where g = r3(1) given in table 2. We stress that the DD’s of
type (r3(1), sl2), (r3(1), so3/sl2) and (r3(1), sl2) are the only DDs for which we have not
succeeded in obtaining a complete quantization, since we have not been able to construct the
quantum coproduct for the (g, δ) sub-Lie-bialgebra. However, we shall see in the following
that it is possible to identify these quantum algebras as Drinfel’d twists of previously known
sl2 ⊕ sl2, so(1, 3) and (2+1) Poincaré algebra deformations. The DD (r3(1), sl2)

′ differs from
(r3(1), sl2) in the pairing.

4.1. Type (r3(1), sl2)

In order to characterize the classical r-matrix r̃ of this DD algebra, we could consider the
following pairing-preserving change of basis:

X̂1 = 1√
2
(X1 + X2) + 1

2
√

2
(x1 − x2), X̂2 = 1√

2
(X1 − X2) − 1

2
√

2
(x1 + x2),

x ′1 = 1√
2
(x1 + x2), x ′2 = 1√

2
(x1 − x2).

Now, comparing with the commutation relations of the Lie algebra g(µ1,µ2,µ3), a 3-parameter
family of graded contractions of so(2, 2) [26], we can make the following identification
between (r3(1), sl2) and the g(µ1,µ2,µ3) generators:

N3 = 2X0, J3 = 2x0, J+ = −x ′2, N+ = x ′1, J− = −X̂1, N− = X̂2.

The DD algebra (r3(1), sl2) is just the so(2, 2) algebra g(λ,−1/2,λ) and its r-matrix is

r̃ = rs + rt1 + rt2 = 1
2 (x ′1 ∧ X̂1 + x ′2 ∧ X̂2) + 1

2x0 ∧ X0 − 1
2x ′1 ∧ x ′2.

Thus, the quantum DD algebra (r3(1), sl2) is isomorphic to the standard deformation of
so(2, 2) generated by rs plus two non-commuting twists generated by rt1 and rt2.
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4.2. Types (r3(1), so3/sl2)

There are two cases labelled by ωλ: when ωλ > 0 we have the (r3(1), so3) DD algebra and
ωλ < 0 corresponds to (r3(1)sl2). Performing the change of basis

X̂1 = X1 − ω

2
x2, X̂2 = X2 +

ω

2
x1

we obtain that the DD algebra so(3, 1) is isomorphic to g(−λ,−1/2,λ). The r-matrix is

r̃ = rs + rt1 + rt2 = 1
2 (x1 ∧ X̂1 + x2 ∧ X̂2) + 1

2x0 ∧ X0 − 1
2x1 ∧ x2.

It is the standard deformation of so(1, 3) [26] plus two non-commuting Reshetikhin
twists [29].

4.3. Type (r3(1), sl2)
′

Through the following change of basis:

X̂1 = X1 + x0, X̂0 = X0 − x1,

the Lie algebra turns out to be g(0,−1/2,1) (the (2+1) Poincaré algebra). The classical r-matrix
is again the standard one [26] plus a pair of twists:

r̃ = rs + rt1 + rt2 = 1
2 (x1 ∧ X̂1 + x2 ∧ X̂2) + 1

2x0 ∧ X0 + 1
2x2 ∧ x0.

We recall that previous works on twist deformations of (3+1) Poincaré algebras were restricted
to the study of Abelian twists [30].

4.4. Type (r3(1), s3(0))

This case is the ω → 0 limit of the type (r3(1), so3/sl2), and it could be considered as a first
step for the quantization of the latter.

Deformed coproducts:

�(x1) = cos(zλx0) ⊗ x1 + sin(zλx0) ⊗ x2 + x1 ⊗ cos(zλx0) − x2 ⊗ sin(zλx0),

�(x2) = −sin(zλx0) ⊗ x1 + cos(zλx0) ⊗ x2 + x1 ⊗ sin(zλx0) + x2 ⊗ cos(zλx0), (4)

�(X1) = ezX0 ⊗ X1 + X1 ⊗ e−zX0 , �(X2) = ezX0 ⊗ X2 + X2 ⊗ e−zX0 .

Deformed commutation rules:

[x1, X1] = sinh(zX0)

z
cos(zλx0), [x2, X1] = − sin(zλx0)

z
cosh(zX0),

[x1, X2] = sin(zλx0)

z
cosh(zX0), [x2, X2] = sinh(zX0)

z
cos(zλx0).

The relation with the deformations described in [26] can easily be derived, and this DD algebra
so(1, 3) corresponds to g(−λ,−1/2,λ) with r-matrix

r̃ = rs + rt = 1
2 (x1 ∧ X1 + x2 ∧ X2) + 1

2x0 ∧ X0.

We have again the standard deformation of so(1, 3) plus a Reshetikhin twist rt .
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Note that the canonical basis {xi, Xj } allows a more manageable description since the two
Hopf subalgebras with classical commutation rules become apparent (compare with [26]).

4.5. Type (r3(1), n3)

This DD algebra corresponds to g(0,−1/2,1) and it is a contraction of both (r3(1), sl2) and
(r3(1), r3(−1)/s3(0)). Its quantization is simply the ω → 0 limit of that in section 4.6.

Deformed coproducts:

�(x1) = (1 ⊗ x1 + x1 ⊗ 1) + z(x2 ⊗ x0 − x2 ⊗ x0),

�(X1) = ezX0 ⊗ X1 + X1 ⊗ e−zX0 , �(X2) = ezX0 ⊗ X2 + X2 ⊗ e−zX0 .

Deformed commutation rules:

[x1, X1] = sinh(zX0)

z
, [x1, X2] = −x0 cosh zX0, [x2, X2] = sinh(zX0)

z
.

By using the transformation X′
1 = −λX1, x

1′ = −x1/λ, the type (r3(1), n3) is just the limit
for λ → 0 of the preceding type (r3(1), s3(0)). Its r-matrix is

r̃ = rs + rt = 1
2 (x1 ∧ X1 + x2 ∧ X2) + 1

2x0 ∧ X0.

We have the Poincaré analogue to the previous case (standard deformation [26] plus a twist).

4.6. Types (r3(1), r3(−1)/s3(0))

We have (r3(1), r3(−1)) for ω = +1, and (r3(1), s3(0)) for ω = −1.

Deformed coproducts:

�(x0) = cosh(
√

ωzx2) ⊗ x0 +
√

ω sinh(
√

ωzx2) ⊗ x1

+ x0 ⊗ cosh(
√

ωzx2) − √
ωx1 ⊗ sinh(

√
ωzx2),

�(x1) = sinh(
√

ωzx2)√
ω

⊗ x0 + cosh(
√

ωzx2) ⊗ x1

− x0 ⊗ sinh(
√

ωzx2)√
ω

+ x1 ⊗ cosh(
√

ωzx2),

�(X1) = ezX0 ⊗ X1 + X1 ⊗ e−zX0 , �(X2) = ezX0 ⊗ X2 + X2 ⊗ e−zX0 .

Deformed commutation rules:

[x0, x1] = x1 cosh [
√

ωzx2], [x0, x2] = sinh [
√

ωzx2]√
ωz

, [X1, X2] = ω
sinh(2zX0)

2z
,

[x0, X1] =
√

ω

z
sinh [

√
ωzx2] cosh [zX0] − cosh [

√
ωzx2]X1,

[x0, X2] = −ωx1 cosh (zX0) − X2 cosh (
√

ωzx2),

[x1, X0] = sinh [
√

ωzx2]√
ωz

, [x1, X1] = cosh [
√

ωzx2]
sinh [zX0]

z
,

[x1, X2] = −x0 cosh (zX0), [x2, X2] = sinh(zX0)

z
.
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Table 3. DD algebras with g = r3(ρ).

(g, g∗) (r3(ρ), n3) (r3(ρ), r3(−ρ)) (r3(ρ), r3(−ρ))′

DD r3(ρ) � R3 r3(ρ) � R3 sl2 ⊕ sl2

[x0, x1] x1 x1 x1

[x0, x2] ρx2 ρx2 ρx2

[x1, x2] 0 0 0

[X0, X1] 0 X0 λX1

[X0, X2] 0 0 −λρX2

[X1, X2] (1 + ρ)X0 ρX2 0

[x0, X0] 0 x1 0
[x0, X1] (1 + ρ)x2 − X1 −x0 − X1 −X1

[x0, X2] −(1 + ρ)x1 − ρX2 −ρX2 −ρX2

[x1, X0] 0 0 λx1

[x1, X1] X0 X0 −λx0 + X0

[x1, X2] 0 0 0
[x2, X0] 0 0 −λρx2

[x2, X1] 0 ρx2 0
[x2, X2] ρX0 ρ(−x1 + X0) ρ(λx0 + X0)

Note that the use of a fully symmetric basis is implicit since

−ωx1 cosh (zX0) − X2 cosh (
√

ωzx2) = −ωSym[x1 cosh (zX0)] − Sym[X2 cosh (
√

ωzx2)].

This DD algebra is an iso(2, 1) algebra g(1,−1/2,0) with classical r-matrix

r̃ = rs + rt1 + rt2 = 1

2
(x1 ∧ X1 + x2 ∧ X2) +

1

2
x0 ∧ X0 − ω

2
x1 ∧ x2.

Once again, we have the standard deformation of the (2+1) Poincaré algebra plus two non-
commuting twists, with the same interpretation as for so(1, 3) of the case in section 4.3.

5. Quantum six-dimensional DD algebras: g = r3(ρ)

The three cases have been fully quantized by us (table 3).

5.1. Case (r3(ρ), n3)

�(x0) = 1 ⊗ x0 + x0 ⊗ 1 − z(1 + ρ)(x1 ⊗ x2 − x2 ⊗ x1),

�(X1) = ezX0 ⊗ X1 + X1 ⊗ e−zX0 , �(X2) = ezρX0 ⊗ X2 + X2 ⊗ e−zρX0 .

[X1, X2] = sinh(z(1 + ρ)X0)

z
, [x0, X1] = (1 + ρ)x2 cosh(zX0) − X1,

[x0, X2] = −(1 + ρ)x1 cosh(zρX0) − ρX2, [x1, X1] = sinh(zX0)

z
,

[x2, X2] = sinh(zρX0)

z
.
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Table 4. DD algebras with g = r3(−1) and g = r′
3(1).

(g, g∗) (r3(−1), n3) (r3(−1), r′
3(1)) (r3(−1), r′

3(1))′ (r′
3(1), n3) (r′

3(1), n3)
′

DD r′
3(1) � R3 r′

3(1) � R3 sl2 � R3 r′
3(1) � R3 sl2 � R3

[x0, x1] x1 x1 x1 x1 x1

[x0, x2] −x2 −x2 −x2 x1 + x2 x1 + x2

[x1, x2] 0 0 0 0 0

[X0, X1] 0 X0 X0 0 λX2

[X0, X2] 0 0 −λX0 0 0
[X1, X2] X0 X0 − X2 X0 − λX1 − X2 ωX0 0

[x0, X0] 0 x1 x1 − λx2 0 0
[x0, X1] x2 − X1 −X1 − x0 + x2 −X1 − x0 + x2 ωx2 − X1 − X2 −X1 − X2

[x0, X2] −x1 + X2 −x1 + X2 λx0 − x1 + X2 ωx1 − X2 −X2

[x1, X0] 0 0 0 0 0
[x1, X1] X0 X0 −λx2 + X0 X0 X0

[x1, X2] 0 0 λx1 0 0
[x2, X0] 0 0 0 0 λx1

[x2, X1] 0 −x2 −x2 X0 X0 − λx0

[x2, X2] −X0 x1 − X0 x1 − X0 X0 X0

5.2. Case (r3(ρ), r3(−ρ))

�(x0) = ezx1 ⊗ x0 + x0 ⊗ e−zx1
, �(X1) = ezX0 ⊗ X1 + X1 ⊗ e−zX0 ,

�(x2) = e−zρx1 ⊗ x2 + x2 ⊗ ezρx1
, �(X2) = ezρX0 ⊗ X2 + X2 ⊗ e−zρX0 .

[x0, x1] = sinh(zx1)

z
, [X0, X1] = sinh(zX0)

z
,

[x0, x2] = ρx2 cosh(zx1), [X1, X2] = ρX2 cosh(zX0).

[x0, X0] = sinh(zx1)

z
, [x0, X1] = −cosh(zX0)x

0 − cosh(zx1)X1,

[x1, X1] = sinh(zX0)

z
, [x2, X1] = ρx2 cosh(zX0),

[x0, X2] = −ρX2 cosh(zx1), [x2, X2] = − sinh(zρ(−x1 + X0))

z
.

The symmetrization prescription is again preserved despite the non-symmetric shape of some
brackets. Note that this DD algebra is self-dual for ρ = 0.

5.3. Case (r3(ρ), r3(−ρ))′

�(x1)= e−zλx0 ⊗ x1 + x1 ⊗ ezλx0
, �(X1) = ezX0 ⊗ X1 + X1 ⊗ e−zX0 ,

�(x2)= ezλρx0 ⊗ x2 + x2 ⊗ e−zλρx0
, �(X2) = ezρX0 ⊗ X2 + X2 ⊗ e−zρX0 .

[x1, X1] = sinh(z(−λx0 + X0))

z
, [x2, X2] = sinh(zρ(λx0 + X0))

z
.

This DD algebra contains gl(2) as a subalgebra in several different ways and is self-dual
for ρ = 0.

6. Quantum six-dimensional DD algebras: g = r3(−1), g = r′
3(1)

These DD algebras with (table 4) have a semidirect product structure and they have been
completely quantized.
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6.1. Case (r3(−1), n3)

�(x0) = 1 ⊗ x0 + x0 ⊗ 1 − z(x1 ⊗ x2 − x2 ⊗ x1),

�(X1) = ezX0 ⊗ X1 + X1 ⊗ e−zX0 , �(X2) = e−zX0 ⊗ X2 + X2 ⊗ ezX0 .

[x0, X1] = x2 cosh(zX0) − X1, [x1, X1] = sinh(zX0)

z
,

[x0, X2] = −x1 cosh(zX0) + X2, [x2, X2] = − sinh(zX0)

z
.

6.2. Case (r3(−1), r′
3(1))

�(x0) = ezx1 ⊗ x0 + x0 ⊗ e−zx1 − z
(
x1 ezx1 ⊗ x2 − x2 ⊗ x1 e−zx1)

,

�(x2) = ezx1 ⊗ x2 + x2 ⊗ e−zx1
,

�(X1) = ezX0 ⊗ X1 + X1 ⊗ e−zX0 , �(X2) = e−zX0 ⊗ X2 + X2 ⊗ ezX0 .

[x0, x1] = sinh(zx1)

z
, [X0, X1] = sinh(zX0)

z
,

[x0, x2] = −x2 cosh(zx1), [X1, X2] = X0 − X2 cosh(zX0),

[x0, X0] = sinh(zx1)

z
, [x1, X1] = sinh(zX0)

z
,

[x0, X1] = −X1 cosh(zx1) − x0 cosh(zX0) + x2 cosh(zX0),

[x0, X2] = −x1 cosh(z(x1 − X0)) + X2 cosh(zx1),

[x2, X1] = −x2 cosh(zX0), [x2, X2] = sinh(z(x1 − X0))

z
.

6.3. Case (r3(−1), r′
3(1))′

In order to get the explicit quantization, we perform a pairing-preserving change of basis:

Y0 = X0, Y1 = 1√
1 + λ2

(λX1 + X2), Y2 = 1√
1 + λ2

(X1 − λX2),

y0 = x0, y1 = 1√
1 + λ2

(λx1 + x2), y2 = 1√
1 + λ2

(x1 − λx2).

In this new basis, the quantum DD algebra reads

�(y0) = e−z
√

1+λ2y2 ⊗ y0 + y0 ⊗ ez
√

1+λ2y2 − z(y1 ⊗ y2 ez
√

1+λ2y2 − y2 e−z
√

1+λ2y2 ⊗ y1)

�(y1) = e−z
√

1+λ2y2 ⊗ y1 + y1 ⊗ ez
√

1+λ2y2
,

�(Y0) = 1 ⊗ Y0 + Y0 ⊗ 1,

�(Y1) = 1

1 + λ2
{(ezY0 + λ2 e−zY0) ⊗ Y1 + Y1 ⊗ (e−zY0 + λ2 ezY0)

− 2λ sinh(zY0) ⊗ Y2 + 2λY2 ⊗ sinh(zY0)},
�(Y2) = 1

1 + λ2
{(e−zY0 + λ2 ezY0) ⊗ Y2 + Y2 ⊗ (ezY0 + λ2 e−zY0)

− 2λ sinh(zY0) ⊗ Y1 + 2λY1 ⊗ sinh(zY0)}.

[y0, y1] = −1 − λ2

1 + λ2
y1 cosh(z

√
1 + λ2y2) +

2λ

1 + λ2

sinh(2z
√

1 + λ2y2)

2z
√

1 + λ2
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[y0, y2] = 2λ

1 + λ2
y1 +

1 − λ2

1 + λ2

sinh(z
√

1 + λ2y2)

z
√

1 + λ2
,

[Y0, Y2] =
√

1 + λ2
sinh(zY0)

z
, [Y1, Y2] = −Y0 +

√
1 + λ2Y1 cosh(zY0),

[y0, Y0] = sinh(z
√

1 + λ2y2)

z
, [y2, Y1] = 2λ

1 + λ2

sinh(zY0)

z
,

[y2, Y2] = 1 − λ2

1 + λ2

sinh(zY0)

z

[y0, Y1] =
(

1 − λ2

1 + λ2
Y1 − 2λ

1 + λ2
Y2

)
cosh(z

√
1 + λ2y2)

− y2 cosh(z
√

1 + λ2y2) +
1 − λ2

1 + λ2
y2 sinh(z

√
1 + λ2y2) sinh(zY0),

[y0, Y2] = −
√

1 + λ2y0 cosh(zY0) −
(

2λ

1 + λ2
Y1 − 1 − λ2

1 + λ2
Y2

)
cosh(z

√
1 + λ2y2)

− 2λ

1 + λ2
y2 sinh(z

√
1 + λ2y2) + y1 cosh(zY0),

[y1, Y1] = sinh(z
√

1 + λ2y2)

z
cosh(zY0) − 1 − λ2

1 + λ2

sinh(zY0)

z
cosh(z

√
1 + λ2y2),

[y1, Y2] = −
√

1 + λ2y1 cosh(zY0) +
2λ

1 + λ2

sinh(zY0)

z
cosh(z

√
1 + λ2y2).

6.4. Case (r′
3(1), n3)

�(x0) = 1 ⊗ x0 + x0 ⊗ 1 + ωz(x1 ⊗ x2 − x2 ⊗ x1),

�(X1) = e−zX0 ⊗ X1 + X1 ⊗ ezX0 − z(X0 e−zX0 ⊗ X2 − X2 ⊗ X0 ezX0),

�(X2) = e−zX0 ⊗ X2 + X2 ⊗ ezX0 ,

[X1, X2] = ω
sinh(2zX0)

2z
,

[x0, X1] = −X1 − X2 + ωx2 cosh(zX0) − ωzX0x
1 sinh(zX0),

[x0, X2] = −X2 − ωx1 cosh(zX0), [x1, X1] = sinh(zX0)

z
,

[x2, X1] = X0 cosh(zX0), [x2, X2] = sinh(zX0)

z
.

6.5. Case (r′
3(1), n3)

′

�(x2) = 1 ⊗ x2 + x2 ⊗ 1 + λz(x0 ⊗ x1 − x1 ⊗ x0),

�(X1) = e−zX0 ⊗ X1 + X1 ⊗ ezX0 − z(X0 e−zX0 ⊗ X2 − X2 ⊗ X0 ezX0),

�(X2) = e−zX0 ⊗ X2 + X2 ⊗ ezX0 .

[x1, X1] = sinh(zX0)

z
, [x2, X1] = (X0 − λx0) cosh(zX0), [x2, X2] = sinh(zX0)

z
.

7. Quantum six-dimensional DD algebras: g = s3(µ), s3(0) and n3

The four remaining cases of DD algebras are summarized in table 5 and all of them can be
fully quantized too.
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Table 5. DD algebras with g = s3(µ), g = s3(0) and g = n3.

(g, g∗) (s3(µ), n3) (s3(µ), s3(1/µ)) (s3(0), n3) (n3,n3)

DD s3(µ) � R3 so(1, 3) r6 n5 ⊕ R

[x0, x1] µx1 − x2 µx1 − x2 −x2 0
[x0, x2] x1 + µx2 x1 + µx2 x1 0
[x1, x2] 0 0 0 x0

[X0, X1] 0 −λX1/µ + λX2 0 ωX2

[X0, X2] 0 −λX1 − λX2/µ 0 0
[X1, X2] µωX0 0 ωX0 0

[x0, X0] 0 0 0 0
[x0, X1] µωx2 − µX1 − X2 −µX1 − X2 ωx2 − X2 0
[x0, X2] −µωx1 + µX1 − µX2 X1 − µX2 −ωx1 + X1 0
[x1, X0] 0 −λx1/µ − λx2 0 −X2

[x1, X1] µX0 λx0/µ + µX0 0 0
[x1, X2] −X0 λx0 − X0 −X0 0
[x2, X0] 0 λx1 − λx2/µ 0 ωx1 + X1

[x2, X1] X0 −λx0 + X0 X0 −ωx0

[x2, X2] µX0 λx0/µ + µX0 0 0

7.1. Case (s3(µ), n3)

�(x0) = 1 ⊗ x0 + x0 ⊗ 1 + µωz(x1 ⊗ x2 − x2 ⊗ x1),

�(X1) = e−µzX0 cos(zX0) ⊗ X1 + X1 ⊗ eµzX0 cos(zX0)

− e−µzX0 sin(zX0) ⊗ X2 + X2 ⊗ eµzX0 sin(zX0),

�(X2) = e−µzX0 cos(zX0) ⊗ X2 + X2 ⊗ eµzX0 cos(zX0)

+ e−µzX0 sin(zX0) ⊗ X1 − X1 ⊗ eµzX0 sin(zX0).

[X1, X2] = ω

2

sinh(2µzX0)

z
,

[x0, X1] = −µX1 − X2 − µωx1 sinh(µzX0) sin(zX0) + µωx2 cosh(µzX0) cos(zX0),

[x0, X2] = X1 − µX2 − µωx1 cosh(µzX0) cos(zX0) − µωx2 sinh(µzX0) sin(zX0),

[x1, X1] = sinh(µzX0)

z
cos(zX0), [x2, X1] = cosh(µzX0)

sin(zX0)

z
,

[x1, X2] = −cosh(µzX0)
sin(zX0)

z
, [x2, X2] = sinh(µzX0)

z
cos(zX0).

7.2. Case (s3(µ), s3(1/µ))

This DD algebra is self-dual for µ = 1 and is isomorphic to so(1, 3) as an algebra.

�(x1) = e− λ
µ
zx0

cos(zλx0) ⊗ x1 + x1 ⊗ e
λ
µ
zx0

cos(zλx0)

− e− λ
µ
zx0

sin(zλx0) ⊗ x2 + x2 ⊗ e
λ
µ
zx0

sin(zλx0),

�(x2) = e− λ
µ
zx0

cos(zλx0) ⊗ x2 + x2 ⊗ e
λ
µ
zx0

cos(zλx0)

+ e− λ
µ
zx0

sin(zλx0) ⊗ x1 − x1 ⊗ e
λ
µ
zx0

sin(zλx0),

�(X1) = e−µzX0 cos(zX0) ⊗ X1 + X1 ⊗ eµzX0 cos(zX0)

− e−µzX0 sin(zX0) ⊗ X2 + X2 ⊗ eµzX0 sin(zX0),
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�(X2) = e−µzX0 cos(zX0) ⊗ X2 + X2 ⊗ eµzX0 cos(zX0)

+ e−µzX0 sin(zX0) ⊗ X1 − X1 ⊗ eµzX0 sin(zX0).

[x1, X1] =
sinh

(
z
(

λ
µ
x0 + µX0

))
z

cos(z(λx0 − X0)),

[x1, X2] = sin(z(λx0 − X0))

z
cosh

(
z

(
λ

µ
x0 + µX0

))
,

[x2, X1] = − sin(z(λx0 − X0))

z
cosh

(
z

(
λ

µ
x0 + µX0

))
,

[x2, X2] =
sinh

(
z
(

λ
µ
x0 + µX0

))
z

cos(z(λx0 − X0)).

7.3. Case (s3(0), n3)

�(x0) = 1 ⊗ x0 + x0 ⊗ 1 + ωz(x1 ⊗ x2 − x2 ⊗ x1),

�(X1) = cos(zX0) ⊗ X1 + X1 ⊗ cos(zX0) − sin(zX0) ⊗ X2 + X2 ⊗ sin(zX0),

�(X2) = cos(zX0) ⊗ X2 + X2 ⊗ cos(zX0) + sin(zX0) ⊗ X1 − X1 ⊗ sin(zX0),

[x0, X1] = −X2 + ωx2 cos(zX0), [x2, X1] = sin(zX0)

z
,

[x0, X2] = X1 − ωx1 cos(zX0), [x1, X2] = − sin(zX0)

z
.

7.4. Case (n3, n3)

This is a self-dual DD algebra with classical commutators and deformed coproducts:

�(x2) = 1 ⊗ x2 + x2 ⊗ 1 + zω(x0 ⊗ x1 − x1 ⊗ x0),

�(X0) = 1 ⊗ X0 + X0 ⊗ 1 − z(X1 ⊗ X2 − X2 ⊗ X1).

8. Concluding remarks

We have successfully applied the analytical approach described in [25] quantizing Drinfel’d
doubles in low dimensions (4D and 6D) and obtained a relevant set of new 6D quantum
algebras. The only four cases for which we have not succeeded in the quantization belong
to the family of classical doubles containing the Lie algebra A1, and could be obtained by
applying specific twists on the well-known standard quantization of so(1, 3) and sl2 � R3

[26]. In general, it becomes apparent that the complexity of the quantum commutation rules
that we have obtained is mainly encoded—by construction—in the deformation of the crossed
relations [xi, Xj ] within the DD algebra and that non-simple Lie algebras play a relevant role
in quantization.

This study shows that the quantization of the canonical Lie bialgebra structure of a classical
double can directly be addressed without making use of the cumbersome construction of the
universal T -matrix, which is defined on the canonical dual of the quantum universal enveloping
algebra. Work is in progress to extend to the construction of the quantum R-matrix from its
classical counterpart r the same procedure that allows us to obtain the coproduct � from the
cocommutator δ.
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